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Abstract. In this paper we present a new method for determining the
Galois group of a square free univariate polynomial. This method makes
use of a priori computation of the Galois group of the factors of its
resolvents, and can also be used for the Galois inverse problem.

1 Introduction

Up to now, essentially three methods to compute the Galois group of a polyno-
mial are known.

1. factorization of the polynomial in successive algebraic extensions (see [26])
2. use relative resolvents (see [25])
3. use the partitions of the absolute resolvents (or simply resolvents) (see [20])

The first one is deterministic, but not very efficient. The second one is also
deterministic. It consist in testing the successive inclusions of the Galois group
which is supposed to be transitive (i.e. the polynomial must be irreducible).
Since it is not possible to use the fundamental Theorem of symmetric functions,
this method requires numerical techniques in order to compute the non absolute
resolvents. However, there exists a formal technique to compute these resolvents
as part of this method 2 (see [14]).

The third method, very efficient, has always been thought to be non deter-
ministic. It is based on the computation a priori of the partition resolvents (i.e.
the degrees of the irreducible factors of the resolvents, that are supposed to be
simple). Some authors have contributed to the developement of the effective Ga-
lois theory with this method ([9], [10], [15], [21], [22], [23], ...). In the paper
[1], a formula is given that depends only on the group and that allows the auto-
matic computation of the entire partition matrix of a reference group (which can
be any finite group). This partition matrix can be used with non absolute resol-
vents when the reference group is not the symmetric group and hence accelerates
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method 2. When the reference group is Y,,, the symmetric group of degree n, the
partition matrix gives a deterministic method to compute the Galois group of a
polynomial of degree n and since it gives all possible algorithms for method 3 it
gives obviously the best algorithm to identifiate the Galois group using only the
partition resolvents. A further advantage of this partition matrix is that it is not
restricted to irreducible polynomials (i.e. the Galois group are not necessarily
transitive). Using the absolute resolvents and the partition matrix it is possible
to compute the Galois group of square free polynomials of degree up to 7 (see [5)
and [6]), of irreducible polynomials of degree 8,9 and 11, and for the degree 10
the second method must also be used (see [2] [3] and [7] ). Note that it is possible
to solve the problem for any square free polynomial of degree 8 not necessarily
irreducible.

In the present paper a new deterministic method to compute the Galois group
of a polynomial is given. It consist in the a priori computation of the matrix of
the Galois group of the irreducible factors of all possible resolvents. Section 1
gives the theorems on which the method is based. When we simultaneously use
the latter matrix and the partition matrix, we obtain for any separable resolvent
the Galois groups and the degrees of its irreducible factors. Obviously this two
matrices provide an algorithm which is more efficient than the one using only
the partition resolvents. Sections 3 and 4 show this for the degrees 8 and 10.
Section 2 gives some information useful to compute absolute resolvents. Section
6 shows how to compute this new matrix with a system like that of [17].

Our method is new, although the idea of considering the Galois groups of
the irreducible factors of resolvents can already be found in Berwick (see [10]).
This result can be applied to non absolute resolvents but for the sake of clarity
we shall only consider absolute resolvents (i.e. the reference group is almost the
symmetric group).

This new matrix is also useful for the Galois inverse problem since it is
possible to know the Galois group of a factor of a resolvent of a polynomial
when we know the Galois group of the polynomial. Section 5 gives an example
that illustrates this fact.

2 Theoretical Results

Let k be a field of characteristic zero and f a square free univariate polynomial
over k of degree n. We look for Gal(f), the Galois group of f over k.

Let ¥ be a polynomial in k[z1, ..., z,], where z1, ..., z, are n indeterminates.
We denote by ¥ the evaluation of ¥ at the n roots aq, ..., a, of f and by {2 the
set of these roots. The symmetric group of degree n, X,,, acts on k[z1, ..., 2],

in the natural way, and for 7 € X,,, the image of ¥ under 7 is denoted by 7V.

Let H be a subgroup of X,. An invariant of H is a primitive element of
the fixed field k(x1,...,2,)7 over k(z1,...,2,)>". A necessary and sufficient
condition for © € k[z1,...,z,] to be an invariant of H is that 7@ = © if and
only if 7 € H.



Let id = v1,...,7. be a left transversal of Y, mod H and © be an invariant
of H. The resolvent of f by O, denoted by Le s, is the following univariate
polynomial over k :

Los(y) =[] —:0)

i=1

The group H is called a testing group and Lo,y is called an H-resolvent.
The results of this paper are based on the theorem of the conservation of the
primitive element (see [1] Theoreme 6.1) :

Theorem 1. Let f be a square free polynomial of k[x] of degree n. Let H be a
subgroup of X, and © an invariant of H. If © is a simple root of the resolvent

Lo, s, then © is a primitive element of the fized field k()N oyer k =
k(Q)Gal(f)ﬁEn'

If G =Galg(f), then by Theorem 1 we have the following diagram:
G [G:GNH] GnH| i

k= k(%) k()M = k(O) (£2) (1)

(the degrees of the extensions appear on top of the arrows). Let h be the simple
irreducible factor of Lg ¢ of which © is a root. Suppose that the degree of h is

r. The elements of the transversal id = 71,...,7. are numbered in such a way
that ¢d = v1,...,7, is a left transversal of G mod G N H. The conjugates of ©
over k are 710, ...,7,0 which are also the r roots of h.

Remark. Since for ¢ =1, ..., e the invariant ©; = ;0 of H; = "/Z-wal satisfies
Lo, = Lo, theorem 1 and the diagram (1) are also true when we substitute the
pair (H;, ©;) for (H,©). The next theorem follows from this remark.

Theorem 2. Under the hypotheses of Theorem 1 and with the previous nota-
tions, if ©;,,...,0;, are simple roots of Loy, then the Galois group of k(§2)

overk(@il,...,é:;) is Gal(f)VHy, N---NH;, .

Proof. Let H and K be two subgroups of X, and let e and f be the primitive
elements of k(£2)7 and k(£2)X over k, respectively. Then :

k(e, f) = k()"

Under the hypotheses of our theorem and together with Theorem 1 we have
k(Oiy,...,6;,) = k() Hu 0 i where Gal(f) = G.

The following theorem is a simple consequence of the one just proved.

Theorem 3. Under the hypotheses of Theorem 1 and with the previous nota-
tions, let V' be a normal subgroup of X, given by V = (\;_, H;. Then the Galois
group of Lo 5 is isomorphic to G/GNV.



Remark. From the above theorem the known results about the cubique resolvent
easily follow and for n > 5 and H ¢ {X,, A, }, we have Theorem 4.6. of [1] : the
Galois group of the resolvent Lg ¢ is Gal(f).

Theorem 2 also gives the Galois group of all the factors of a resolvent. In the
following theorem we only consider irreducible factors, since these are the ones
that matter for the computation of our matrix :

Theorem 4. If h is a simple irreducible factor of Lo,y of degree r whose Toots

are é;, ..., Oy, then its Galois group over k is isomorphic to G /G (,_, H;, where
each ©; = v;0 is a resolvent of the group H; = v;H~; ' and Gal(f) = G.

Proof. The Galois group of the polynomial h over k is the one of the exten-
sion k(O1,...,0,) over k, which is therefore a Galois extension. Hence K =
G(,—, H; is normal in G and the Galois group of A is isomorphic to G/K.

[13] also considers all the different groups relative to a resolvent.
Corollary 5. The order of the Galois group of h over k is |G : G(\;_, H;].

Remark. Theorem 1 gives a method to compute the partition matrix, since the
degree of h is equal to the index [G : G N H;], for each ¢ in {1,...,r} (see [8]).
By Theorem 4, the Galois group of h is known and can be computed a priori
using only the subgroups G and H of X,,. Hence we can construct the matrix of
the irreducible factors of the resolvents with a system as that of GAP.

2.1 Notations

Let H and G be two subgroups of X, and g be a univariate polynomial with
Galois group G. [G, H| denotes the list of the Galois groups of the irreducible
factors of any separable H-resolvent of g. If we have the degree of just one factor,
we write down this degree. If just the degree d of a factor and the order D of
its Galois group are known, this group is denoted by (D)4. The exponents +
and — refer to the subgroups of Ay (the alternating group) and to the ones not
contained in Ay, respectively. Here d is the degree of the irreducible factor under
consideration. We denote by [G, H]4 the sublist of [G, H] relative to the factors of
degree d. The group G is called the candidate group and H the testing group. For
example, in Section 3.2 we have [T35, Ha| = (Dy4,8,16™). Let g be a polynomial
of degree 8 and of Galois group T35, and let L be a separable Ha-resolvent of g.
The polynomial L has a factor of degree 4 whose Galois group is Dy, a factor of
degree 8, and a factor of degree 16 whose Galois group is a subgroup of Ajg.

The group Ti(] ) is the subgroup T; of X; which appears in the article [11].
The groups A;, D;, C; are, respectively, the alternating, dihedral and cyclic group
contained in Y;, and V} is the Vierer group of Xy.



2.2 General Assumptions

In this article, we suppose that all resolvents are separable. If this is not the
case, it is possible to use a theorem of multiplicity (see Theorem 6.5 in [1]) and
if this is still not sufficient it is also possible to compute a Tschirnhaus separable
resolvent of f (i.e. an H-resolvent, where H = X1 x X,,_1) whose Galois group
is also Gal(f) (see the above theorem).

3 Computations of the Resolvents

Except for the testing group Tys in degree 8, for all the testing groups H which
appear in this paper, one or more H —resolvents can be computed via the module
SYM (see [29]), an extension of MAXIMA (see [24]). The algorithms and the formulas
are described in [27] and [4].

For m a positive integer, the Vandermonde determinant in the m indetermi-
nates T1,...,Tm 18 O = 0 (215 -+, Tm) = [[1cicjem (@i — ;)

It is important to recall that if a resolvent Lg ¢ is computed and factorised,
it is immediate to compute partial factors of the resolvent Ls, 0, ¢. For example,
let f be a polynomial of degree 8 of Galois group T4s; the partition of Ly, s is
(16, 32) (see Section 3). A factor of degree 32 of Ly, s is obtained by a simple
resultant. This factor factorizes into two irreducible factors of degree 16. This
new resolvents, introduced in [4], is of interest in practice for two reasons. First,
it can be computed quickly, and second we can compute only the factors we
need.

It is also important to remark that the product, or the monomial resolvents,
can be computed quickly. Hence in the pratice, the resolvents are preferable to
the sum or to linear resolvents. We can also compute these particular resolvents
with the fast algorithms of [12].

4 Degree 8

In this section we show the interest of the Galois group of the resolvent factors
for the identification of the Galois group of an irreducible polynomial of degree
8.

In May 1993, with Jean-Marie Arnaudies we have computed a submatrix of
the partition matrix for the reference group Xg (except for the testing groups of
degree > 672 and the candidate groups which are not transitive). In our article
[2] we have only given the result for the group H whose H-resolvent can be
computed with SYM.

All the computations are performed with [17], that can compute all the con-
jugacy classes of subgroups of Xs. For simplicity, we have adopted the notation of
[11] for the group T1, ..., Tso, the transitive subgroups of Xg (up to conjugacy).

The testing groups are the following ones, and are given with the type of their
invariants, except for the testing group Tyg of index 30 an invariant of which can
be computed with the algorithm of [16].



Let the subgroups A= [(1,2)(3,4,5,6), (1,4)(2,6,3,5),(7,8)(5,6)] and
B= [(1,7,4,2,3),(1,2,4,7,3),(5,6,8),(4,7)(6,8)].

Classes|Index| Type Invariants
Hl 16 .A7 X 21 (57 or 68-738
Hz 28 22 X 26 S(iEl,JCQ)
Hg 35 T47 bg = X1T2X3T4 + T5X6T7T8
H4 56 A 58 S(.’El,l'z)
Hs 56 26 X Idg m($1,$2)7 1(1‘171'2), 52
He 56 AG X 22 6852 ou 66
H7 56 23 X 25 S(l‘l, xo, .733)
Hs 70 Tus g bg
H11 70 B 588(.’[5,$67£L’g)

In this table s(x1,...,,) is a symmetric function in 1, ...z, ; l(z1,z2) =

axy + bzy where b # a # —b and m(x1,22) = 228 where a # b (a,b € k).

Remark. The testing groups are all non trivial groups of index less than 56 in X,
and the groups whose invariant has the form §,,© where © in an invariant of the
previous groups. Hence for the testing groups Hy, Hg and Hi1, we can compute
fastly some factors of the associated resolvents with the factors of the respective
resolvents associated with the testing group Ho, Hs and Hr; (see Section 2).

4.1 Comments about the Tables of 3.2

It is difficult (but not impossible) to decide between Ty5 and Tys. With the
absolute resolvents, there exist three methods for this purpose :

— [Tus, Tugls = X% and [Ty2,Tug]s = X3 x As ; the Tyg-resolvents must be
computed with a numerical approximation of the roots of f ;

— [T45, Hlﬁ]ﬁ = H{S) and [T42, 5 H16]6 = H2(?1)7 where H16 = Dg X 24 3 Jflxgl‘%l‘z
is an invariant of H;4 and the associated resolvent can be computed rapidly;
but its degree 210 is big ;

— [Tys, H12] = (16,96) and [Tya, Hio] = (82,96) ; where Hip = A3z x X5 ; the
formal Hyo-resolvent Ls, is partially tabulated but the computation of Ls, ¢
is very long ; its degree 112 can be lowered to 56 since L5, ; is an even
polynomial.

With the tables of Section 3.2, the algorithm based only on the partitions
of the resolvents is very accelerated except for the following candidate groups
which can be determined quickly using only the partitions : Tsg, Ty, Ta7, Tus, T34,
Tus, Tos,T11 and T5. For the other candidate groups, this new table allows an
important progress in their determination. For the following groups, the compu-
tation now requires only a few seconds or a few minutes instead of many hours :
Tus,T36, To5, Taa, T38, Tiho, Ta1, T33,To9, Tho, T24, T13-

For example, to decide between the candidate groups Tyg and T3¢ using only
the partition resolvents, the testing group of smallest index is H = Az x X5



and the degree of an H-resolvent is 112. Now to decide between Tyg and T34 it
is sufficient to determine the Galois group of the irreducible factor of degree 7
of an Hs-resolvent instead the previous H-resolvent. The Hz-resolvent can be
computed and factorized quickly and so is the determination of the Galois group
in the degree 7 (see [11]).

4.2 The tables in Degree 8

In the following tables we do not give the Galois groups of the factors that we
have computed when the candidate group can be determined without them. But

it is very easy to compute these groups with the program GAP of Section 6.
For all subgroup T of Ag we have [T, H] = (8%,8%").

[T, H1] L Asg, = Tug
16 | T50 Tu7 Tag T38 Tao T35 T30 To7 T31 Tuz Toe T17 T23 115 Ts Ts
8° Tye Tag Tr6 To1 T7 Ty
T, Tys £ As < As
[T, 7] A [ A (T Las] :
70 Ts 50
(6) 2 50 6,24 Tar Tue
Ty 7, T53,48 » Tss 2,12,16 Ty Tas
Téﬁ)v T, 48 Taa Tao T3
T\, T2, 48 T1o 2,4,8,16 T35 T30
¥, 17,48 Ty . Tos Tor
142,42 Tuz 2, Dy, 16 Ts1 Tae
2,32, 36 Ty7 Tas 2,D%,C4,16 Th T21 Th7
352 Tuo 2, Dép Va,16 Ts Trs
2,4,8%,16,32 | Tss5 Tso Tor 2,Cq, Va, 16 Ty
2,4,8%, 32 Tog 15 y Tao
7%, 28° T4s Ts6 T25 2,14 Tas
32,44 242 Tso T3z Tia 1,7,8 14 Tag Tz6 Tos
74,217 Tyr T5?,12% Tys
% 1622’ 1832 Tas Taz 11, 2Afc( Eg 128 12 542
23,8216 Ty Toe T 12, Az, X, 8, w1
’ T 1,2,Cs, Ag, 8,12 Tss
12,6%,122, 162 Ti1 Tss Tahe et e
23, 8% 162 Ty To1 Tr 8 42 g2 oo 39 T32 T12
12,22, 4% 8% 162 Tao Tro Too|| 2508 , o T
12,65, 162 Tsa 21 722 , Dy, 8 , T29 T2o
12,2549, 162 TisTio ||} 22,64 Das8 T1o
23,44 8% 16 Tg L1028 T Ti1 Ts
, 47,87, 1 e
12,34 42, 12¢ Tys Tha 1742723 47468=8 Toa T
12,34 42 64 192 Ty % ’257 42, : %s Tlo
1%, v, 8° Ty T2z T11 Ts e Jr 9°2
16 94 46 g4 Ty Ty 1°,2°,8 T3
16 98 48 g2 T, 12,74 Ts7
FECIRY! T 14,32,4% 62 Ty
. = 16,24 44 T
27, 4
[Tv H7] £ Asg < Asg
56 Ts50 Tas Tuo Tyg T36 T37 T25
T,48 Tar Tue Tas Taz Tar T34 T3 |7 [Tas, H] (T2, H]
24,32 Taq T38 Tuo T39 T32 = T
Ha| (12F,16%) | (127, 167)
T, 16, 32| T35 T30 T2s T26 T17 T29 Tho 4 ot 1 ot
3 Hs|(1,12F,18%)| (1, 12%, 18T)
T°,32 T27 Ts1 T16 T21 T20 T22 i 1oL
2 Hs| (24, 32%+) | (24F,32%)
8,24 To3 T4 T12 T4 T3 + + + +
T 163 Tys Tis He| (247,327) (247,32™)
83,16° Ts T T T11 T10 To
8" Ty Ts Ty To T




[T, Ho] £ As < As [T, H14] £ As < As

28 Ts0 Tuz | Tao Tus T36 T37 T2s5 112 Ts0 Tus

Xy4,24 Tyq Tyo Taz T39 16,96 Tar

Ay, 24 Tss T2 T2 48,64 Tsa T35 Tuo

12,16 Ty7 Tae | Tas Taz Ty1 T34 T33|| 16,32,64 T35
D4, T, 16 TS;Tg;Tzs T29 Thg 16%,64 | Ts0 Tor T31 T26

2
26 L17 56 Tag Tug T36
T15 Ts T3z Tas

C473T7 16 | T27 The T7 T2o 16, 482 Ta3 >

D3,16 '

i) Tys T2, 482 Tae Tas Taz Taz
C4,Dy, 16 Tio T34 T
Ty, (121)? T4 82,162, 322 T. o Toe

+ _ ) 9 28 ng T19
4,12 ,122 T1a 162, 322 Ti7 Tis
An, 1% Ths 8%,32% T16 T21 Ta0 T22
Va, T T31 To1 T2 Th1 Ts 242,32 T30 T
Dy, 8% Ts 82,244 T T32
ol T , T24 T12
Vy, D3, 82 Ty 167 Ts T e
VP, TS T 82,166 T
Dy, Vi, 8 T. 8%, 164 y
4;/7 , 4 7146 17 T11 Tho Ty
4 T3 8 Ty Ts Ty T> T3
[T, Hs A <
] £ As < As [T Ha [ £As | < As
35 Tso0 Tao
7 98 56 Ts0 Tus
5(7)7 T48 ’11247 48 T44
T3(7),28 Tse 8,48 Tag
T,",28 Tos Ty4,48 Tuo T3
Y3, Tu1,24 Ty 24,32 Tur
Az, Tz3,24 Tss Ty, 16,32 Tss
X3, T34, 24 Tao T4, 16,32 T30
X3, Tléx, 24 Tas 8,16, 32 Tor
Ag, 53,24 Tio 127,32 Taue
As, A2, 24 Tyo Tha 47,87, 32 Tos
14,21 Tys 282 Tyo Tus T
7 7 91 4’19“ 4’18“ *
5 s Hyg's T57 5 oo 37 £25
1,16,18 Tar Tue Tys Ta2 2y, 24 Ts9
(6) A3, 247
1,7;°,12,16 T 1 T32 Th2
) a 8,167
1, 7% 12,16 T ’ Ta1
40 33 Ty, 163 Tos T
1,2,8%,16 T35 T50 T2s Ta7 Th6 T7 ® 26T
1,2,Ts,T1s,16 T26 42 2 Tis T
1,2, Ti7, Tho, 16 Tir 127,167 Tas Tio
1,2,T5, Ty, 16 T1s 12%, 167 Ta1 T34 Tss
1,2,Ts, Ty, 16 Ty C3,T?,16° | Ty Tr Tao
1,2,C4, Da, 8,16 T, || D3 T.167 Tao Tao
1,2,D3,8,16 Tao To || Vi T%,16% | Tn
1,6%,16 Ts4 DA%, 162 Tis
1,3%,4,6%,12 Tha Ca2%,Dp%, 162 Tio
1,23, D3, 16 Tis 8°,16 Ts
1,23, D2,C4, 16 Tio 3,12t Tos4 Tha
1,324,122 Ty T1s AZ, 12 T1s
13,84 T31 To1 Ve, T® T22T11 Ts
1,2,42,83 T Th Ty 4%,8° T
30000, 4 12 d
; ) ;/4 73T y T2 T11 Ts Dj}’ V42 ’ Tz Ty
13,22 4% 8 Ty Cy Vi, Ty T
13,24 448 Ty 410, 82 Ty
17,47 Ts 4t Ts




[T, Hs] £ As < As
56 Ts50 T3 Ta9 Tag T36 [T, He] £ As < As
T37 T2s 56 Ts50 Tas Tag Tug T36 T37 T25
T,48 | Tya T35 Tuo T23 T39 T32 8,48 Tya T8 Tuo T39 T32
24,32 Tur Tue Ta5 Ta2 Ta1 24,32 Tur Tus Ty2 Tar T34 T33
T34 T33 T,16,32| T35 Ta7 T26 T17 Ta9 Tho
8,16,32| Ts5 T30 Tos 83,32 Tis Tis
T,16,32 Tos T1s Tag Tig 8,242 Ta3 T4 T12Th4aT1s
83,32 T7 Tis 162,24 Tue
8,242 T4 T2 T1a Trs|| 8,16% | To Tos Ts1 The To0 To2
8,163 Tor Ts1 T To Ta2 83,162 Ts Te T T11 Tho Ty
T21 Tz Te 8°,16 Ty
8%, 162 Tz Ty1 Tho To 87 T, Ts Ty ToTs
87 Ty Ts Ty To T

4.3 Information about Non Separable Resolvents

It is not necessary that all resolvents be separable. By the theorem of multiplicity,
only the interesting factors must be simple. For example, we have [T3, Hs] =
{V4}7. Let f be a polynomial of degree 8 whose Galois group is T3. If a Ho-
resolvent is not separable, but its factor of degree 4 is simple then its Galois
group is V4. Conversely if f is a polynomial such that a Hs-resolvent of f has a
simple factor of degree 4 whose Galois group is not Vy, then Galy(f) # Ts.

5 Degree 10

The groups 11, ...,Ty5 are the transitive groups of degree 10 which appear in
[11].

In the article [7] we have completed the tables of partitions in degree 10 and
11 given in [22]. The degree 10, for the transitive candidate groups cannot be
dealt with only with this submatrix of the matrix of partitions, with Xy as
reference group; the computation of relative resolvents is needed.

This section gives the Galois groups of the factor resolvents of degree less
than 10 in the submatrix of partition of [7]. Hence, it is now possible to identify
the candidate groups 7111, T34, T56, 137, 138, T39 and accelerate the algorithm of
[7] in many cases.

5.1 The testing Groups

The following testing groups is a subset of the testing groups which appear in
the paper [7]. Let A, B et C be the following subgroups of X :

A= [(1,2,8),(1,3,8),(1,4,8),( 5,8),(1,6,8),(1,7,8),(1,2)(9,10)] ;

B = [(3?4357677)?(17273)7(8ﬂ ) (9 10)(172)] ;

C = (1,2,3,4,5),(1,2),(6,7,8,9,10), (6,7), (1,6)(2,7)(3,8)(4,9)(5, 10)]



Groups Index Invariants
H, Ao 2 d10
Hy |AgxId 20 d9
H3 ZQ X Eg 45 S(.%l,l'g)
Hy |X3xX; 120 s(xy, w2, 23)
Hs |Idyx X5 90 &y, 1(x1,z0),m(zy,x0)
Hg |X4x2Xg 210 s(x1, 2, x3,24)
H; |X5x Y5 252 s(w1, T2, T3, T4, T5)
H9 A 90 (5852(509,I'10),5105(z9,$10)
H10 B 240 5108($1, {EQ,.’Eg)
Hyy C 126 big =1 x5 +x6- - T10
His |Ag x Xy 90 bs , 010029, T10)
Hiy Gy 252 d10b10

5.2 Tables in Degree 10

For © = x1 — w2 or © = w122, a factor of degree 5 of the resolvent Lo ; gives
rapidly the factor of degree 10 of Ls,,0,5 (see Section 2).

[T, H3]5 T
Y. [T Tho Tos Tog T
T T39 T38 Tog Tos To3 Tie A5 37 T39 T38 T22 12
T 5 34 136 111
[T, Hia)10|T57 Tss Toy Tos M o e
[T, Ho10 Ts (20) T3 Ty 5 24 129 125 15
7 . CS T14 Tg T1
73" Tz Tig T15 T3

5.3 Comments
If we compare with [7], using the following tables we do not compute:

— Lp,,,5 to determine Thg, T36 or Thy
- ‘Cl'1—l'27f to determine T5, TS, Tlla T12 T14,T15 and T22
— L5,21a0,5 to determine 77 and T3.

For the six sets {T437T33}, {T41,T40}, {TQg,Tlg}, {Tgl,Tlo,Tg}, {TQQ,TlQ}
and {77, To0, T19,T17} is necessary to compute relative resolvents to decide be-
tween the candidate groups in each set (Ids x X7 determines T3 and T53, but its
index is 720). With the function Index of [17], we have the following results: T33
is a subgroup of index 36 in Ty3 ; Tyo is a subgroup of index 2 in Ty ; Tog, T19
and Ty are subgroups of index 2 in T57 ; T35 is a subgroup of index 2 in Ty and
T1o and Ty are subgroups of index 2 in Tb;.

6 Galois Inverse Problem

There exist some lists of irreducible polynomials (see [23] [18], [2], [3], the list
of Mattman,J. McKay and G. Smith in degree 8, the list of Alexander Hulpke



in degree 10 ...). The list of Alexander Hulpke is not complete and allows 33
groups. With GAP, we have computed the Galois groups associated with the parts
of degree 10 in all partition matrices of the reference group X, (n =4,...,10)
that we have tabulated them. Many of them give a Galois group that is not Y.
In particular Thg is the Galois group of 7(x) = x'% — 2811628 + 2635031522° —
421605043225 — 8231838468481 + 592692369730562° — 164584085603401728 +
4443770311291846656. The list of Alexander Hulpke has no group for Ths. Ac-
tually, with GAP we compute [X; x Ag, X1 X ngﬁ)]lo = TQ%O). The polynomial
be = x1T2T3 + T4T526 1S an invariant of X7 X T1(§) and Xy x Ag is the Galois
group of the polynomial (z — 1)2%(x — 6) + 3124 (We have used the polynomials
given by G. Smith). The factor of degree 10 of the resolvent Ly, , computed with
SYM is the polynomial 7.

7 Computation Using GAP

With the system GAP, it is easy to compute our group.

Consider the partition I = [G, H] = (d}"*,...,dq'") in the partition matrix
of X, with m; >0 fori=1,...q. Let m =m, and d = dy. We look for the m
groups of [G, H]4 corresponding to d™ in the partition I.

Let I' = {71,...,7%} be a transversal of X,, mod H and H = {1?1, .. .,}fI;n}
the dm subgroups G N 'yiH’yfl of X, such that the index in G of E is equal to
d. Then, it is possible to number H such that for ¢ = 1,...m, if 7,...,74 is a
transversal of G mod H,q, then, {my Higr{ %, ... ,TdHide_l}, the set of the conju-
gates (no necessarily distincts) of fITd is equal to the subset {Hi(/i_:l+17 Hi;:iﬁ,

..,E-/d} of H. Let U; = G’ﬂ;-d:idid+1 I’{vj, for i =1,...,m. Hence the m Galois
groups of the factors of degree d of the H-resolvents of polynomials whose the
Galois group is G are in set [G, H]q = {G/Uy,...,G/Uy} and can be calculated
using the following algorithm GroupeResolvante (in pseudo-GAP) :

Inputs : Sn , G, H, d
Qutputs : sol=[G/U_1 , G/U_2 , ... , G/U_m]
lesconj := List(RightCosets(S_n,H),
rc->Intersection(G,H"Representative(rc)));
lesconj:=Filtered(lesconj, ghi->Index(G,ghi)=d);
sol:=[];
while Length(lesconj)>d-1 do
gh:= lesconj[1];
lesconj_g := List(RightCosets(g,gh),
rc->gh"Representative(rc));
for ghj in lesconj_g do
lesconj_aux :=[];
while not(ghj=lesconj[1]) do
Add(lesconj_aux,lesconj[1]);
lesconj:=Sublist(lesconj, [2..Length(lesconj)]);od;



lesconj:=Sublist(lesconj, [2..Length(lesconj)]);

Append(lesconj,lesconj_aux); od;
for ghj in Sublist(lesconj_g,[2..degre_resol]) do
gh := Intersection(gh,ghj); od;

Add(sol,FactorGroup(G,gh)); od;
return sol;

8 Conclusions

This paper proves the interest of the computation of the Galois group of the
irreducible factors of a resolvent, and also that this computation is easy.

With I. Gilles, we have computed polynomials of degree 12 using the method
of Section 5. The degrees 4 to 8, for square free polynomials can also be acceler-
ated using this new method. We are now computing the corresponding groups.
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